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Logistics

HW 1 is on Piazza and Gradescope
Deadline: Friday, Jan. 25, 2019

Office hours

— Alina: Thu 4:30-6:00pm (ISEC 625)
— Ewen: Mon 5:30-6:30pm (ISEC 605)
How to submit HW

— Create a PDF and submit on Gradescope before
11:59pm the day assignment is due

— Submit zip of code in Google form
— Should include ReadMe file on how to run code
— Preferred: Use Jupyter notebook in R or Python



Collaboration policy

e What is allowed

— You can discuss the homework with your colleagues

— You can post questions on Piazza and come to office
hours

— You can search for online resources to better
understand class concepts

* What is not allowed
— Sharing your written answers with colleagues
— Sharing your code or receiving code from colleague
— Do not use directly code from the Internet!



Outline

Terminology for supervised learning

Multiple linear regression
— Derivation of optimal model in matrix form

Practical issues

— Feature scaling and normalization
— Qutliers
— Categorical variables

Lab



Terminology

Hypothesis space H = {f: X — Y}
Training data D = (x;,y;) EX XY
Features: x; € X

Labelsy; €Y

— Classification: discrete y; € {0,1}

— Regression: y; € R

Loss function: L(f, D)

— Measures how well f fits training data

Training algorithm: Find hypothesis f:X - Y

~ f = argmin L(f,D)



Linear regression

Given:
— Data X = {x(l) ..... 33(")} where 29 e R? Features
— Corresponding labels y = {y(l). —y ,y("’)} where y<”) € R
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Simple Linear Regression: 1 predictor



Interpretation
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x (explanatory variable)

Hypothesis: hg(x) =6, + 0,x
Loss: MSE= = 3 (hg(x@) — y @)’



Regression Learning

Training
— Pre- Feature Regression
processing extraction model
La.beled _ Normalization Feature Min MSE
x® y(l) Standardization Selection

hg(x) =6y + 0;x
Testing

New Regression " Price
Predictions Risk score
model

Test MSE

data

Unlabeled
e ho(x') = 0y + 01’



Simple Linear Regression

» DatasetxWe R,y € R, hy(x) =0, + 6,x

1 . NN 2
* J(0) = - ?:1(30 f1x —y(l))
MSE / Loss
* Solution of min loss
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How Well Does the Model Fit?

Correlation between feature and response
— Pearson’s correlation coefficient

/ Co-variance of x and y

1}—'-rr I- . "|.' =
Cor(A.Y) = — A B /At it / =
Vg (ri — n’V‘:T‘r Ay —5)°

Standard deviation x Standard deviation y

Measures linear dependence between x and y
Positive coefficient implies positive correlation

— The closer to 1 the coefficient is, the stronger the correlation

Negative coefficient implies negative correlation
— The closer to -1 the coefficient is, the stronger the correlation
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Correlation Coefficient

Correlation Coefficient=1

1607
140
1204
100

BO—

60

Correlation Coefficient= -1

140
" 120 ’
“h
" | 00 S,
& o "ﬁ
!' *
" 80 -,
-
. B .
40—
! ' ! ' ' ! EIEI' BIEI 160 11'@ 15,!3 1&0
60 &0 100 120 140 160 <
Correlation Coefficient=0
140
120 Do,
‘-' e L] N -
1004 R .
Clig - ..
| | | | |
B0 100 1200 140 B0

11



Multiple Linear Regression
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* Linear Regression with 2 predictors

. Dataset: x € R%,y € R
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MSE funct

6,  -20 -20 8,

Convex function implies unique minimum
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Vector Norms

Vector norms: A norm of a vector | |x| | is informally a
measure of the “length” of the vector.

n 1/p
ol = (z; )
1=1

— Common norms: L,, L, (Euclidean)
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Vector products

We will use lower case letters for vectors
The elements are referred by x.

* Vector dot (inner) product:
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e Vector outer product:
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Hypothesis Multiple LR

e Linear Model

* Consider our model:

d
h(x) = Z 0,
j=0

* Let

0 = CET:[l rr ... Id}

* Can write the model in vectorized formas h(x) = 0Tx

Vector inner product
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Training data

Feature 1 Feature d
) (1) (1) T
| R T,
X = 1 qpsf) o ;]T{(;) Training example i
(n) _(n)
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R™X (d+1)

* Total number of training example: n
* Dimension of training data point (number of features): d



Use Vectorization

e Consider our model for n instances:

d
h (a:(?:)) = Z Gj:rga) = 0T
j=0

* Let . | 1 Jfgl) . Jrg) ]
0
Model 0 _1 X =1 x&z) o :zrf;) Training
parameter : _ _ _ X data
9d. : : " .
i i 1 J?gn) . Jrgn)
IR,((H_UX1 i IR,HX(dJrl) ]

* Can write the model in vectorized form as hg(x) = X6

Model prediction vector y
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Loss function MSE

* For the linear regression cost function:

Let:
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Matrix and vector gradients

If y = f(x),y € R scalar,x € R" vector

oy [ ay oy oy Vector gradient
dx | 0x; 0x, T 0xy (row vector)

Ify = f(x),y € R™,x € R"

- 9yi1  Q9yi  9Qyi
0x;  0%2 0Xn Jacobian
a dyo oyo o dys .
9GY | o o dxn matrix
dX ; ; ; (Matrix
OYm 0Ym L OYm gradient)
L 0Xxq 0X2o OXp
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Properties

If w,x are(d X 1) vectors,

IfA:(nXd)x:(dx1), an:A

IfA: (d X d) x:(d x 1),

oxT Ax

If A symmetric: ™

s (d X 1), a“’“"

aWTX _ T
0x - W
axTAx T
=(A+A")x
= 2Ax
= 2xT



Min loss function

— Notice that the solution is when d—(;](é?) =0

0) = ~|1x0 -y’
J(6) = |16 -y

Using chain rule
af (6 dh(g(6))dg(6o
£0) = h(g(®), f( ) _ (ag; )) %(H)

h(x)—IIxII 9(9)—X9 y
2[(X6—1)"X] = 0 = XT (X6 —y) = 0

(XTX )0 =XTy

9J(0) _ 2
00

Closed Form Solution: 0=(XTX) !XTy
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Vectorization

* Two options for operations on training data
— Matrix operations
— For loops to update individual entries

* Most software packages are highly optimized
for matrix operations
— Python numpy
— Preferred method!

* Matrix operations are much faster than loops!



Closed-form solution

* Can obtain @ by simply plugging X and yinto

1 .1‘{1) 1 Eil}

: : : y

. . y(2)
X=11 a gz} .1‘._2_"} Y= :

- ; y

1 rim .I‘Sl)

* If X" Xis not invertible (i.e., singular), may need to:

— Use pseudo-inverse instead of the inverse

AGA =A

— Remove redundant (not linearly independent) features

* In python, numpy.linalg.pinv(a)

— Remove extra features to ensurethatd £ n
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Multiple Linear Regression
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Feature Standardization

* Rescales features to have zero mean and unit variance

. l ~— (i
— Let u; be the mean of feature j:  1; = ~ ZTE )

i=1
— Replace each value with:
(?) Iu(;) — /J:, fOI’J - 1d
T, s ] (not x,!)

S
)
* s;is the standard deviation of feature |

* Must apply the same transformation to instances for
both training and prediction

e Mean 0 and Standard Deviation 1
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Other feature normalization

* Min-Max rescaling

(1)
Xj
] max; —min;

—mmj

€ [0,1]

— min; and max;: min and max value of feature j

e Mean normalization

. NONNS
(i) j TR

— X,
] max; — minj
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Feature standardization/normalization

e Goalis to have individual features on the
same scale

* |s a pre-processing step in most learning
algorithms

* Necessary for linear models and Gradient
Descent

* Different options:

— Feature standardization

— Feature min-max rescaling

— Mean normalization



Review

* Solution for multiple linear regression can be
computed in closed form

— Matrix inversion is computationally intense

— We will discuss an efficient training algorithms
(gradient descent)

* |n practice several techniques can help
generate more robust models

— Qutlier removal
— Feature scaling
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