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Class Outline
• Introduction – 1 week

– Probability and linear algebra review

• Supervised learning - 7 weeks
– Linear regression
– Classification (logistic regression, LDA, kNN, decision trees, 

random forest, SVM, Naïve Bayes)
– Model selection, regularization, cross validation

• Neural networks and deep learning – 2 weeks
– Back-propagation, gradient descent
– NN architectures (feed-forward, convolutional, recurrent)

• Unsupervised learning – 1-2 weeks
– Dimensionality reduction (PCA)
– Clustering (k-means, hierarchical)

• Adversarial ML – 1 lecture
– Security of ML at testing and training time
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Schedule and Resources
• Instructors

– Alina Oprea
– TA: Ewen Wang 

• Schedule
– Tue 11:45am – 1:25pm, Thu 2:50-4:30pm
– Shillman Hall 210 
– Office hours: 

• Alina: Thu 4:30 – 6:00 pm (ISEC 625)
• Ewen: Monday 5:30-6:30pm (ISEC 605)

• Online resources
– Slides will be posted after each lecture
– Use Piazza for questions, Gradescope for homework and 

project submission 
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Grading

• Assignments – 25%
– 4-5 assignments and programming exercises 

based on studied material in class
• Final project – 35%

– Select your own project based on public dataset
– Submit short project proposal and milestone
– Presentation at end of class (10 min) and report

• Exam – 35%
– One exam about 3/4 in the class 
– Tentative end of March

• Class participation – 5%
– Participate in class discussion and on Piazza
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Outline

• Supervised learning
• Classification

• Regression

• Unsupervised learning
• Clustering

• Bias-Variance Tradeoff

• Occam’s Razor

• Probability review
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Example 1
Handwritten digit recognition

MNIST dataset: Predict the digit
Multi-class classifier
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Supervised Learning: Classification
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Classification
• Training data

– 𝑥(𝑖) = [𝑥1
(𝑖)
, … 𝑥𝑑

(𝑖)
]: vector of image pixels 

– Size 𝑑 = 28x28 = 784
– 𝑦(𝑖): image label (in {0,1})

• Models (hypothesis)
– Example: Linear model

• 𝑓 𝑥 = 𝑤𝑥 + 𝑏

– Classify 1 if 𝑓 𝑥 > T ; 0 otherwise

• Classification algorithm
– Training: Learn model parameters 𝑤, 𝑏 to minimize error (number 

of training examples for which model gives wrong label)
– Output: “optimal” model 

• Testing
– Apply learned model to new data and generate prediction

8

Error



Example Classifiers

Linear classifiers: logistic 
regression, SVM, LDA

SVM polynomial kernel

Decision trees

9



Real-world example: Spam email

SPAM email
• Unsolicited
• Advertisement
• Sent to a large number of people
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Classifying spam email

Content-related features
• Use of certain words
• Word frequencies
• Language
• Sentence

Structural features
• Sender IP address
• IP blacklist
• DNS information
• Email server
• URL links (non-matching)
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Classifying spam email
SPAM REGULAR

Feature extraction
• Content
• Structural

Training

Classifier
• Logistic regression
• Decision tree
• SVM

Model

Numerical
Labeled data
• SPAM
• REGULAR

Testing

New email
SPAM Filter

REGULAR Allow
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Example 2
Stock market prediction
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xi = (xi1,…xid)  - d predictors (features)
yi - response variable

Linear regression
1 dimension

𝑥(1), … , 𝑥(𝑁) 𝑦(1), … , 𝑦 𝑁 ∈ 𝑅 Numerical

𝑥(𝑖) = (𝑥1
(𝑖)
, … , 𝑥𝑑

(𝑖)
)

𝑦(𝑖)
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Income Prediction

Linear Regression Non-Linear Regression
Polynomial/Spline Regression
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Supervised Learning: Regression
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𝑥(𝑖), 𝑦(𝑖) ∈ 𝑅 𝑓(𝑥)
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𝑥′
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Example 3: image search

Find similar images to a target one
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K-means Clustering

K=3 18



K-means Clustering

K=6 19



Hierarchical Clustering
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Unsupervised Learning

• Clustering

– Group similar data points into clusters

– Example: k-means, hierarchical clustering

• Dimensionality reduction

– Project the data to lower dimensional space

– Example: PCA (Principal Component Analysis)

• Feature learning

– Find feature representations

– Example: Autoencoders
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Supervised Learning Tasks

• Classification
– Learn to predict class (discrete)

– Minimize classification error 1/N σ𝑖=1
𝑁 [𝑦 𝑖 ≠ 𝑓(𝑥(𝑖))]

• Regression
– Learn to predict response variable (numerical)
– Minimize MSE (Mean Square Error)

– 1/𝑁σ𝑖=1
𝑁 𝑦 𝑖 − 𝑓 𝑥 𝑖 2

• Both classification and regression
– Training and testing phase 
– “Optimal” model is learned in training and applied in 

testing
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Learning Challenges
• Goal

– Classify well new testing data  
– Model generalizes well to new testing data

• Variance
– Amount by which model would change if we 

estimated it using a different training data set
– More complex models result in higher variance

• Bias
– Error introduced by approximating a real-life problem 

by a much simpler model
– E.g., assume linear model (linear regression), then 

error is high
– More complex models result in lower bias

Bias-Variance tradeoff
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Example: Regression
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Bias-Variance Tradeoff

Model underfits 
the data

Model overfits the 
data
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Generalizes well on new data



Occam’s Razor
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Select the simplest machine learning model that gets reasonable 
accuracy for the task at hand



Recap

• ML is a subset of AI designing learning 
algorithms

• Learning tasks are supervised (e.g., classification 
and regression) or unsupervised (e.g., clustering)
– Supervised learning uses labeled training data

• Learning the “best” model is challenging
– Design algorithm to minimize the error

– Bias-Variance tradeoff

– Need to generalize on new, unseen test data

– Occam’s razor (prefer simplest model with good 
performance)
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Probability review

2
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Discrete Random Variables
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Visualizing A
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Axioms of Probability
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Interpreting the Axioms
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Interpreting the Axioms
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Interpreting the Axioms
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The union bound

• For  events  A and  B
P[ A ∪ B ]  ≤  P[A] + P[B]

Axiom: P[ A ∪ B ]  = P[A] + P[B] – P[A ∩ B]

If A ∩ B = Φ, then P[ A ∪ B ]  = P[A] + P[B]

Example:
A1 = {  all x in {0,1}n  s.t  lsb2(x)=11  }    ;    A2 = {  all x in {0,1}n  s.t. msb2(x)=11  }

P[ lsb2(x)=11 or msb2(x)=11 ] = P[A1∪A2]  ≤  ¼+¼  =  ½ 

A
B
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Negation Theorem
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Random Variables (Discrete)

Def:  a random variable  X  is a function     X:U⟶V 
Def: A discrete random variable takes a finite number of values: |V| is finite

Example:    X is modeling a coin toss with output 1 (heads) or 0 (tail)
Pr[X=1] = p, Pr[X=0] = 1-p 

We write    X ⟵ U   to denote a uniform random variable (discrete) over U 

for all   u∈U:     Pr[ X = u ]  =  1/|U|

Example: If p=1/2; then X is a uniform coin toss

Probability Mass Function (PMF): p(u) = Pr[X = u]
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Example

1. X is the number of heads in a sequence of n
coin tosses

What is the probability P[𝑋 = 𝑘]?

P 𝑋 = 𝑘 = (
𝑛
𝑘
) 𝑝𝑘 1 − 𝑝 𝑛−𝑘 Binomial Random Variable

2. X is the sum of two fair dice
What is the probability P[𝑋 = 𝑘] for 𝑘 ∈ {2,… , 12}?

P[X=2]=1/36; P[X=3]=2/36; P[X=4]= 3/36
For what k is P[𝑋 = 𝑘] highest?
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Expectation and variance

Expectation for discrete random variable X

Properties
• 𝐸 𝑎𝑋 = 𝑎 𝐸 𝑋
• Linearity: 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

Variance
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𝐸 𝑋 =෍

𝑣

𝑣𝑃𝑟[𝑋 = 𝑣]



Conditional Probability

Def:   Events A and B are independent if and only if  
Pr[ A ∩ B ] = Pr[A] ∙ Pr[B]

If 𝐴 and 𝐵 are independent

Pr[𝐴|𝐵] =
Pr 𝐴 ∩ 𝐵

Pr[𝐵]
=
Pr 𝐴]Pr[𝐵

Pr[𝐵]
= Pr[A]
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