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Outline
• Review of linear models
– Separating hyperplanes

• Support Vector Machines
– Linearly separable data

• Maximum margin classifier
– Non-separable data

• Support vector classifier
– Non-linear decision boundaries

• Kernels and Radial SVM
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Linear models we’ve seen
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Linear regression



Linear models we’ve seen

Classifiers with linear decision boundary:
• Perceptron
• Logistic regression
• Linear discriminant analysis
• today: support vector classifier
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Hyperplane
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• Line (2-dimensions): !" + !$%$ + !&%& = 0
• Hyperplane (d-dimensions): !" + !$%$ + ⋯!*%* = 0



Recall:
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Recall:
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Recall logistic regression:
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• Let ! = #$% (a measure of x’s distance from the decision boundary)
• & ' = 1 % = )(!) (Decision boundary tries to maximize probabilities 

assigned to correct answers)



Support vectors
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Outline
• Review of linear classifiers
– Separating hyperplanes

• Support Vector Machines
– Linearly separable data

• Maximum margin classifier
– Non-separable data

• Support vector classifier
– Non-linear decision boundaries

• Kernels and Radial SVM
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Linear separability
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Notation (supervised learning)
• Training data !(#), … , !(') with !(() =

!#((), … , !*(()
+

• Labels are from 2 classes: ,(() ∈ {−1,1}
• Goal: 
– Build a model to classify training data
– Test it on new vector !′ = !′#, … , !′* 3 to predict 

label ,4
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Separating hyperplane
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!" + !$%$(') + ⋯!*%*' > 0 if /(') = 1

!" + !$%$(') + ⋯!*%*' < 0 if /(') = −1

Perfect separation between the 2 classes

For all training 
data % ' , / ' ,
5 ∈ {1, … , 9}



Separating hyperplane
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!(#)(%& + %()((#) + ⋯%+)+(#)) > 0
For all training 
data )(#), !(#),
/ ∈ {1, … , 4}



From separating hyperplane to 
classifier
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• Training data !(#), … , ! ' with !(() = !#((), … , !*
(() +

• Labels are from 2 classes: ,(() ∈ {−1,1}
• Let 23, … , 2* (will be learned) such that:

• Classifier 
4 5 = sign 23 + 2#5# +⋯2*5* = sign(2<z)

• Classify new test point !′
– If 4 !′ > 0 predict y’= 1
– Otherwise predict y’= −1

,(()(23 + 2#!#(() + ⋯2*!*
(()) > 0



Separating hyperplane

• If a separating hyperplane exists, there are 
infinitely many

• Which one should we choose?
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Intuition
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Classifier Margin Define the margin of a 
linear classifier as the 
width that the 
boundary could be 
increased by before 
hitting a datapoint.
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Maximum Margin
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Define the margin of a 
linear classifier as the 
width that the 
boundary could be 
increased by before 
hitting a data point.

Choose the maximum 
margin linear 
classifier: the linear 
classifier with the 
maximum margin.



Support Vectors (informally)
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• Support vectors = points “closest” to hyperplane
• If support vectors change, classifier changes
• If other points change, no effect on classifier



Finding the maximum margin classifier
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• Training data !(#), … , ! ' with !(() = !#((), … , !*
(() +

• Labels are from 2 classes: ,( ∈ {−1,1}

maximize M

,(() 23 + 2#!#(() + ⋯2*!*
(() ≥ 7 ∀9

2 : = 1

Normalization constraint
(ok because if 2;! = 0, 

then also =2;! = 0)

Each point is on the 
right side of hyper-

plane at distance ≥ 7



Equivalent formulation

• Min ! "

• #(%) !' + !)*)(%) + ⋯!,*,(%) ≥ 1 ∀0

• Maximum margin classifier – given by solution 
! to this optimization problem

• Can be solved with quadratic optimization 
techniques. Easier to solve via its dual 
problem.
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Properties of solution
• The solution to the (dual) optimization 

happens to provide a convenient way to 
rewrite the decision function using new 
variables !"
– Originally: # $ = sign *+ + *-$- +⋯*/$/ =
sign(*1z)

– Equivalent to: # $ = *+ + ∑" !" < $, 7(") >
• For test point z, the inner product < $, 7(") > = $17(")

with each training instance 7(") in turn.
• And !" ≠ 0 only for support vectors! For all other 

training points !" = 0.
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Outline
• Review of linear models
– Separating hyperplanes

• Support Vector Machines
– Linearly separable data

• Maximum margin classifier
– Non-separable data

• Support vector classifier
– Non-linear decision boundaries

• Kernels and Radial SVM
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Linear separability
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(but almost)



Non-separable case
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Optimization problem has no solution!



Maximum margin is not always the 
best!
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• Overfits to training data
• Sensitive to small modification (high variance)



Support vector classifier
• Allow for small number of mistakes on training 

data
• Obtain a more robust model

max M

!(#) %& + %()((#) + ⋯%+)+(#) ≥ - 1 − 0# ∀2
% 3 = 1
0# ≥ 0, ∑# 0# = 8

28Error Budget (Hyper-parameter)

Slack



max M
!(#) %& + %()(

(#) + ⋯%+)+
(#) ≥ -(1 − 0# ) ∀2

% 3 = 1
0# ≥ 0, ∑# 0# = 8
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Error 
Budget

Slack

0# = 0
Correct side 

of margin

0 < 0# < 1
Violates margin

Correct label

0# > 1
Incorrect label
At most C data 

points



Equivalent formulation

• Min ! " + $ ∑& '&
• ((&) !+ + !,-,(&) + ⋯!/-/

(&) ≥ 1 − '& ∀4
• '& ≥ 0

• Just like in separable case, gives solution of the form:

6 7 = !+ +9
&
:& < 7, -(&) >

Where :& ≠ 0 for support vectors (and :& = 0 for all other 
training points)

• This model is called Support Vector Classifier, also Linear SVM, 
also soft-margin classifier
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Properties
• Maximum margin classifier
– Classifier of maximum margin
– For linearly separable data

• Support vector classifier
– Allows some slack and sets a total error budget 

(hyper-parameter)
• For both, final classifier on a point is a linear 

combination of inner product of point with 
support vectors
– Efficient to evaluate
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Error Budget and Margin
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Larger C
Low variance

Smaller C
Over-fitting

Find best hyper-parameter C by cross-validation



Resilience to outliers
• LDA is very sensitive to outliers
– Estimates mean and co-variance using all training 

data
• SVM is resilient to outliers
– Decision hyper-plane mainly depends on support 

vectors
• Logistic regression is also resilient to points far 

from decision boundary
– Cross-entropy uses logs in the loss function
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Lab – Linear SVM
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Lab – Linear SVM
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Lab – Linear SVM
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Lab – Radial SVM
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Outline
• Review of linear models
– Separating hyperplanes

• Support Vector Machines
– Linearly separable data

• Maximum margin classifier
– Non-separable data

• Support vector classifier
– Non-linear decision boundaries

• Kernels and Radial SVM
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Linear separability
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(but almost)

(not even close!)



Non-linear decision
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More examples
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Kernels
• Support vector classifier

– h ! = #$ + ∑'∈) *' < !, -(') >
= #$ + ∑'∈) *' ∑123 !1-1

(')

– S is set of support vectors 
– Replace with h ! = #$ + ∑'∈) *'4(!, -('))

• What is a kernel?
– Function that characterizes similarity between 2 

observations
– 4 5, 6 =< 5, 6 > = ∑1 5161 linear kernel!
– The closer the points, the larger the kernel 

• Intuition
– The closest support vectors to the point play larger role in 

classification
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Any kernel
function!



The Kernel Trick
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• Enlarge feature space
• Shape of the kernel changes the decision boundary



Kernels
• Linear kernels
– ! ", $ =< ", $ > = ∑) ")$)

• Polynomial kernel of degree m
– ! ", $ = 1 + ∑),-. ")$)

/

• Radial Basis Function (RBF) kernel (or 
Gaussian)
– ! ", $ = exp −4∑),-. (")−$))2

• Support vector machine classifier
– h 8 = 9- + ∑)∈; <)!(8, =()))
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General SVM classifier
• S = set of support vectors
• SVM with polynomial kernel

– ℎ " = $% + ∑(∈* +( 1 + ∑-.%/ "-0-(()
3

– Hyper-parameter m (degree of polynomial)
• SVM with radial kernel
– ℎ " = $% + ∑(∈* +(exp −8∑-.%/ ("-−0-(())2
– Hyper-parameter 8 (increase for non-linear data)
– As testing point z is closer to support vector, kernel is 

close to 1
– Local behavior: points far away have negligible impact 

on prediction
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Kernel Example
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Advantages of Kernels
• Generate non-linear features
• More flexibility in decision boundary
• Generate a family of SVM classifiers
• Testing is computationally efficient
– Cost depends only on support vectors and kernel 

operation

• Disadvantages
– Kernels need to be tuned (additional hyper-

parameters)
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When to use different kernels?
• If data is (close to) linearly separable, use 

linear SVM
• Radial or polynomial kernels preferred for 

non-linear data
• Training radial or polynomial kernels takes 

longer than linear SVM
• Other kernels
– Sigmoid
– Hyperbolic Tangent
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Review SVM
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SVM for Multiple Classes

50



Comparing SVM with other classifiers

• SVM is resilient to outliers
– Similar to Logistic Regression
– LDA or kNN are not 

• SVM can be trained with Gradient Descent
– Hinge loss cost function

• Supports regularization
– Can add penalty term (ridge or Lasso) to cost 

function
• Linear SVM is most similar to Logistic 

Regression
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Support vector classifier

• Min ! " + $ ∑& '&
• ((&) !+ + !,-,(&) + ⋯!/-/

(&) ≥ 1 − '& ∀4
• '& ≥ 0
• Rearranging: 1 − ( & ℎ - & ≤ '&
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h -(&) = !+ + !,-,(&) + ⋯!/-/
(&)

'& = 0
Correct side of 

margin

0 < '& < 1
Violates margin

Correct label

'& > 1
Incorrect label



Support vector classifier

• Min ! " + $ ∑& '&
• ((&) !+ + !,-,(&) + ⋯!/-/(&) ≥ 1 − '& ∀4
• '& ≥ 0
• Rearranging: 1 − ( & ℎ - & ≤ '&
• Define cost(ℎ -(&) , ((&)) = max 0,1 − ((&)ℎ -(&)

– When '& > 0, this is just '&
– When i is correctly classified (and outside the margin), 
1 − ( & ℎ - & ≤ 0, so cost = 0
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h -(&) = !+ + !,-,(&) + ⋯!/-/
(&)



Hinge Loss

• ! " = ∑%&'( max 0,1 − 0(%)ℎ 4(%) + 6 ∑7&'8 "79
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Hinge loss

h 4(%) = ": + "'4'(%) + ⋯"848
(%)

Total Error Budget Regularization Term

! " = <=
%&:

(
max 0,1 − 0(%)ℎ 4(%) +=

7&'

8
"79

< = '
>



Objective for Logistic Regression
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Cross-entropy loss



Regularized Logistic Regression
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L2 regularization



Connection to Logistic Regression
• ! " = ∑%&'

( max 0,1 − 0(%)3 4(%) + 6 ∑7&8
9 "7

:
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Hinge loss

0(%) "' + "848
(%) + ⋯"949

(%)

3 4(%) = "' + "848
(%) + ⋯"949

(%)

• ! " = < ∑%&'
( max 0,1 − 0(%)3 4(%) +∑7&8

9 "7
:

< = regularization cost



Lab – Radial SVM
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Lab – Radial SVM
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Lab – Multiple Classes
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Lab – Multiple Classes
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