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Outline
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— Linearly separable data

 Maximum margin classifier

— Non-separable data

e Support vector classifier

— Non-linear decision boundaries
e Kernels and Radial SVM



Linear models we’ve seen

Linear regression



Linear models we’ve seen

Classifiers with linear decision boundary:
* Perceptron

* Logistic regression

* Linear discriminant analysis

e today: support vector classifier




Hyperplane

* Line (2-dimensions): 8y + 01x1 + 0,x, =0
* Hyperplane (d-dimensions): 85 + 6,x1 + -+ 03x45 = 0

FIGURE 9.1. The hyperplane 1 4+ 2X1 + 3X2 = 0 is shoun. The blue region is
the set of points for which 1 +2X, 43X, > 0, and the purple region is the set of
points for which 1 +2X, 4+ 3X5 < 0.



Recall:

Linear classifiers

* Linear classifiers: represent decision boundary by hyperplane
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0

9(1

rT — [ 1 =y ... x4 ] @ o

All the points x on the hyperplane satisfy: 87x = 0

h(x) = sign(0Tax) where sign(z) =

1 ifz>0
—1 itz<O0

—Note that: 0T >0 — y = +1

Ol <0 — y=-—1




Recall:

Perceptron Limitations

* |s dependent on starting point
* |t could take many steps for convergence

* Perceptron can overfit
— Move the decision boundary for every example

Which of this is
optimal?




Recall logistic regression:

Let z = @7 x (a measure of x’s distance from the decision boundary)

P(y = 1|x) = g(z) (Decision boundary tries to maximize probabilities

assigned to correct answers)

he(x) = g(0Tx)

/9(2)

-

| | I

@7 should be large negative
values for negative instances

OTa should be large positive
values for positive instances

* Assume a threshold and...
— Predicty=1if hg(x) > 0.5
— Predicty =0if hg(ax) < 0.5




Support vectors
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Linear separability
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Notation (supervised learning)

e Training data xD, ..., x(™ with x() =

(7, ...,xg>)T

» Labels are from 2 classes: y") € {—1,1}
* Goal:

— Build a model to classify training data

— Test it on new vector x' = (x4, ..., x'7)" to predict
label y’



Separating hyperplane

6y + Hlx() + - de(l) >0 ify® =1

0o + Hlx(l) + - dec(l) <0 ify® = -1

Perfect separation between the 2 classes

For all training
data x(®),y®
i €{1,..,n}
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Separating hyperplane

y(i)(Ho + 91x£i) + .- dec(ii)) >0

X,

For all training
data x(i),y(i),
i €{1,..,n}
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From separating hyperplane to
classifier

Training data x, ..., x™ with x® = (xfi),

Labels are from 2 classes: y® € {—1,1}
Let O, ..., 84 (will be learned) such that:

y(i)(HO + Hle) + .- dec(li)) > (

Classifier
f(z) = sign(@y + 012, + -+ 04z4) = sign(0'z)
Classify new test point x’

— If f(x') > 0 predicty’'=1
— Otherwise predicty'= —1

0



Separating hyperplane

0 1 2 3

* |f a separating hyperplane exists, there are
infinitely many
* Which one should we choose?



Intuition

Which of these linear classifiers is the best?
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Classifier Margin

Define the margin of a
linear classifier as the
width that the
boundary could be
increased by before
hitting a datapoint.
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Maximum Margin

Define the margin of a
linear classifier as the
width that the
boundary could be
increased by before
hitting a data point.

Choose the maximum
margin linear
classifier: the linear
classifier with the
maximum margin.
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Support Vectors (informally)

e Support vectors = poihfs “closest” to hyperplane
* If support vectors change, classifier changes
* If other points change, no effect on classifier
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Finding the maximum margin classifier

, : T
* Training data x(l), ...,x(") with x() = (xf), ...,xc(ll))

Labels are from 2 classes: y; € {—1,1}

maximize M
y () (90 + 91x§i) + - dec(zi)) = M Vi
l6]], = 1

|

Normalization constraint
(ok because if 8Tx = 0,
then also k87x = 0)

Each point is on the
right side of hyper-
plane at distance = M



Equivalent formulation

* Min HHHZ
¢ ¥ O (8) + 0,27 + 0460 ) = 1 i

* Maximum margin classifier — given by solution
6 to this optimization problem

* Can be solved with quadratic optimization
techniques. Easier to solve via its dual

problem.
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Properties of solution

* The solution to the (dual) optimization
happens to provide a convenient way to
rewrite the decision function using new
variables «;

— Originally: f(z) = sign(6y + 0121 + -+ 0424) =
sign(87z)
— Equivalent to: f(z) = 0y + X; a; < z,x® >
* For test point z, the inner product < z,xW > =7zTxO
with each training instance x® in turn.

* And a; # 0 only for support vectors! For all other
training points a; = 0.
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Linear separability
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20

1.0

0.5

0.0

0.5

1.0

Non-separable case

Xy

Optimization problem has no solution!
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Maximum margin is not always the
best!

e QOverfits to training data
e Sensitive to small modification (high variance)
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Support vector classifier

* Allow for small number of mistakes on training
data

e Obtain a more robust model

max M
yO (6 + 62 + - 0,257) = M(1 - € )i
lol[, =1 |
€ > O»Ziei —C Slack
|
!

Error Budget (Hyper-parameter)




max M
i (1) (1) :
y ) (90 + 01,7 + -+ O ) > M(1—¢€;) Vi
lol], = 1 |
€ = O'Zi €; = C —— Error Slack
Budget
0<¢g <1
Violates margin
L] Correct label
€; = 0 © '
Correct side 5 - e > 1
of margin Incorrect label
At most C data
points
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Equivalent formulation

Min HHHZ +C )€

y® (90 + Hlx() + - de(l)) 1—¢; Vi
€; >0

Just like in separable case, gives solution of the form:

f(z) =6, +z a; < z,xV >
i
Where a; # 0 for support vectors (and a; = 0 for all other
training points)
This model is called Support Vector Classifier, also Linear SVM,
also soft-margin classifier
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Properties

* Maximum margin classifier
— Classifier of maximum margin
— For linearly separable data

e Support vector classifier

— Allows some slack and sets a total error budget
(hyper-parameter)

* For both, final classifier on a point is a linear
combination of inner product of point with
support vectors

— Efficient to evaluate



Error Budget and Margin

X, X,
Larger C Smaller C
Low variance Over-fitting

Find best hyper-parameter C by cross-validation
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Resilience to outliers

* LDA is very sensitive to outliers

— Estimates mean and co-variance using all training
data

e SVM is resilient to outliers

— Decision hyper-plane mainly depends on support
vectors

* Logistic regression is also resilient to points far
from decision boundary
— Cross-entropy uses logs in the loss function



x[.2]

Lab — Linear SVM
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Lab — Linear SVM

-

> library(el071)
> svmfit=svm(y~.,

data=dat, kernel="linear",

> plot (svmfit, dat)

x.1

SVM classification plot

cost=10, scale=FALSE)
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Lab — Linear SVM

sSummary (svmric)

Call:
svm(formula = y ~ ., data = dat, kern

=]
1
b
]
2
[
| ot
15
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o
"
L]
-~
O
(8]
L]
o
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»
(=
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10, scale = FALSE)

Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
gamma: 0.5

Number of Support Vectors: 49

( 24 25 )

Number of Classes: 2

summary (svmfic)

Call:
svm(formula = y ~ ., data = dat, kernel = "linear"™, cost = 0.0l1, scale = FALSE)

Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 0.01
gamma: 0.5

Number of Support Vectors:

w
w

( 44 44 )

Number of Classes: 2

Levels:

36
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Lab — Radial SVM

T IR TPl 1RR T35
X[1:100,1=X[1:100, |+

F1 M . - - . - - - -
X[|101:100, J—x~_l_,l_:_5|_’n, 1-2
p— y - 7 . -\ - - -
y=C(Irep (_, —5'-1'] ¢ IEPR (.'_, oU) :l

dat=data.frame (x=x,v=as.factoxr (v))

plot (x, col=y)
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separable

not
linearly
separable

(but almost)

Linear separability
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Non-linear decision

X2
o

FIGURE 9.8. Left: The observations fall into two classes, with a non-linear
boundary between them. Right: The support vector classifier seeks a linear bound-

ary, and consequently performs very poorly.

X,
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More examples




Kernels

e Support vector classifier

h(Z) HO + ZlES a; < Z,X (3 Any kernel

=0, + ZiES xa; Zj=1 ZjX; function!
— S is set of support vectors /
— Replace with h(2) = 0y + X;cc a; K (z,xV)
* What is a kernel?

— Function that characterizes similarity between 2
observations

— K(a,b) =< a,b > = Z]- a;b; linear kernel!
— The closer the points, the larger the kernel
* |ntuition

— The closest support vectors to the point play larger role in
classification
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The Kernel Trick

“Given an algorithm which is formulated
in terms of a positive definite kernel K;,
one can construct an alternative
algorithm by replacing K, with another
positive definite kernel K,”

» SVMs can use the kernel trick

* Enlarge feature space
* Shape of the kernel changes the decision boundary

43



Kernels

* Linear kernels
—K(a,b) =< a,b>=),;a;b;
* Polynomial kernel of degree m

~K@@b)=(1+3%,ab; )"

e Radial Basis Function (RBF) kernel (or
Gaussian)

—K(a,b) = exp(—y Zizo(a;—b;)?)
e Support vector machine classifier
—h(2) = 0y + Xies 2K (2, xD)
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General SVM classifier

* S =set of support vectors
 SVM with polynomial kernel

(@) = 0 + Sies i (1 + Loz )
— Hyper-parameter m (degree of polynomial)
 SVM with radial kernel

— h(2) = 6y + Yies azexp (—y Xo(z—x{")2)

— Hyper-parameter y (increase for non-linear data)

— As testing point z is closer to support vector, kernel is
closeto 1

— Local behavior: points far away have negligible impact
on prediction



Kernel Example

™~

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel

is capable of capturing the decision boundary.
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Advantages of Kernels

Generate non-linear features
More flexibility in decision boundary
Generate a family of SVM classifiers

Testing is computationally efficient

— Cost depends only on support vectors and kernel
operation

Disadvantages

— Kernels need to be tuned (additional hyper-
parameters)



When to use different kernels?

If data is (close to) linearly separable, use
linear SVM

Radial or polynomial kernels preferred for
non-linear data

Training radial or polynomial kernels takes
longer than linear SVM

Other kernels
— Sigmoid
— Hyperbolic Tangent



Review SVM

SVMs find optimal linear separator

The kernel trick makes SVMs learn non-linear
decision surfaces

Strength of SVMs:

— Good theoretical and empirical performance
— Supports many types of kernels

Disadvantages of SVMs:

— “Slow” to train/predict for huge data sets (but relatively fast!)
— Need to choose the kernel (and tune its parameters)
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SVM for Multiple Classes

* Many SVM packages already have multi-class
classification built in

* Otherwise, use one-vs-rest

— Train K SVMs, each picks out one class from rest,
yielding (1) o 1t)

— Predict class 7 with largest (9(1.'))TX

Y]
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Comparing SVM with other classifiers

SVM is resilient to outliers

— Similar to Logistic Regression
— LDA or kNN are not

SVM can be trained with Gradient Descent
— Hinge loss cost function

Supports regularization

— Can add penalty term (ridge or Lasso) to cost
function

Linear SVM is most similar to Logistic
Regression



Support vector classifier

h(x®) =0, + Hlx() + - de(l)

Min “6”2 + CZ'Ei
y @ (90 + Hlx() + - de(l)) 1—¢; Vi

EiZO

Rearranging: 1 — y(i)h(x(i)) < €;

/ ] 0< g <1
A . .
— 0 s Violates margin
€= | Correct label
Correct side of re

Ei > 1
Incorrect label

margin
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Support vector classifier

h(x(i)) =0y + Hlei) + - dec(li)

Min “9”2 + CZiEi
y @ (90 + 91x§i) + .- dec(li)) =>1—€; Vi

EiZO

Rearranging: 1 — y(i)h(x(i)) < €;
Define cost(h(x(i)),y(i)) = max (0,1 — y(i)h(x(i)))
— When €; > 0, this is just €;

— When j is correctly classified (and outside the margin),
1 — y(i)h(x(i)) < 0,socost=0



Hinge Loss
h(x(i)) =0, + 91x£i) + - dec(li)

¢ J(0) = Xy max (01— y©Or(x®)) + 239, 67
\ J

|

I Hinge loss |

Total Error Budget Regularization Term
n
. . d 2
J(@) =C 2 max (0,1 — y(‘)h(x(‘))) + Zj—l 0;
i=0 B

1
C=3

54



Objective for Logistic Regression

n

J(O) = — Z [,z/(i) log he (V) + (1 — ,l/(i)) log (1 — l).g(ib(i>)):|

i=1
* Cost of a single instance:

_‘ N —log(hg(x)) ify=1
cost (]?9(33) l/) - { _ log(l — ])9(:13)) 1f Yy = 0

* Can re-write objective function as

n

J(0) = Z(‘ost (h,g(:v(i)),y(i))

1=1
\ J
|

Cross-entropy loss
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Regularized Logistic Regression

n

J(0) = — Z {y(i) log /2/.9(:13(")) — (1 — ,z/(i)) log (1 — hg(a:("))ﬂ

* We can regularize logistic regression exactly as before:
d
2
Jregutarized (8) = J(8) + A Y 6
j=1

L2 regularization
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Connection to Logistic Regression

+ J(0) = X omax (0,1 — yDf (x®)) + A2, 67
|
Hinge loss F(x®) =0y + 0,5 + - 05

J(6) = C X", max (0,1 —y® f(x(i))) + 39, 67

C = regularization cost

y<;;(90-;r 91; +“ e;x(”)
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Lab — Radial SVM

T IR TPl 1RR T35
X[1:100,1=X[1:100, |+

F1 M . - - . - - - -
X[|101:100, J—x~_l_,l_:_5|_’n, 1-2
p— y - 7 . -\ - - -
y=C(Irep (_, —5'-1'] ¢ IEPR (.'_, oU) :l

dat=data.frame (x=x,v=as.factoxr (v))

plot (x, col=y)
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Lab — Radial SVM

train=sample (200,100)

svmfit=svm(y~.,

data=dat[train, ], kernel="radial",

plot (svmfit, dat[train,])

x.1
o

-1

3 -

SVM classification plot

gamma=1,

cost=l)



Lab — Multiple Classes

x(.2]

¥=rbind(x, matrix(rnorm(50*2), ncol=2))
v=c(y, rep(0,50))

x[y==0,2]=x[y==0,2]+2
dat=data.frame (x=x, y=as.factor(vy))

par (mfrow=c(1,1))
plot (x,col=(y+1))

Q

x[,1]
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Lab — Multiple Classes

>

> svmfit=svm(y~., data=dat, kernel="radial", cost=1l0, gamma=l)
> plot(svmfit, dat)

>

SVM classification plot

x.1

—
-
—
-
—
—

X2
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