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Abstract
Polytypic programming is very useful in functional languages to
capture generic functionality, but is of little help to programmers in
object-oriented languages. We have developed a form of polytypic
programming, which is more object-oriented friendly, that we call
traversal-based generic programming. The approach involves the
use of several algorithms for function set generation, dispatch, and
type-checking. In this paper we give an overview of our approach
and a detailed account of the various algorithms involved in making
traversal-based generic programming useful, safe, and efficient.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

General Terms Algorithms, Design

Keywords Traversals, Function-Objects, Type Checking

1. Introduction
Over the years polytypic programming has proven its worth to pro-
grammers. It allows library writers to provide more general func-
tions over datatypes, and allows programmers to use these func-
tions on user-defined types with little or no specialization. There
are some limitations when the genericity of a function definition
does not match the level of abstraction necessary to solve a prob-
lem, e.g., higher level notions like evaluation, but when applica-
ble, polytypic functions can eliminate excess boilerplate code. Typ-
ical approaches [14, 15] work well in functional languages like
Haskell [23, 34], but cannot be applied directly to mainstream
object-oriented (OO) languages. This is mainly due to the ad-hoc
nature of type hierarchies in class-based OO languages, where each
class is considered a type and can be extended/subclassed indepen-
dently. This makes it difficult to model the generic structure of a
hierarchy or translate instances into a universal datatype.

We have previously introduced a more OO friendly notion of
generic and polytypic programming that we call traversal-based
generic programming (TBGP) [5, 6]. Our approach uses a set of
functions (e.g., a multi-entry function-object) to do a deep fold over
objects/instances. An adaptive traversal walks an object and folds
recursive results by applying functions (or methods) from the set,
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selected by a type-based multiple dispatch. The traversal selects the
function with a signature that best matches the type of the current
node and the types of recursive traversal results from its fields. The
separation of traversal and functions allows sets to be extended
by overloading or overriding cases, and provides the necessary
flexibility to adapt to the ad-hoc nature of class hierarchies. In
addition, our approach supports the emulation of traditional forms
of polytypic programming through function set generation.

Implementations of our approach [3, 4] involve a number of
algorithms that make function sets more useful, make programs
more efficient, and guarantee the safety of traversals and dispatch.
In this paper we present some of the more interesting algorithms,
in particular:

Generating Polytypic Functions We represent OO type hierar-
chies with an updated form of class dictionaries [21]. The struc-
ture of class dictionaries can in turn be described by a class dic-
tionary. We use this more OO friendly description as a universal
datatype over which to write functions that generate function
sets specialized for arbitrary datatypes, discussed in Section 3.
We use this technique to generate traditional polytypic func-
tions like Show, as well as useful extensible function sets for
implementing type-unifying and type-preserving [16, 19] style
functions.

Type-based Multiple Dispatch Our adaptive traversal selects func-
tions from a set to fold recursive results. We use a type-based
asymmetric multiple dispatch, similar to CLOS [38], that de-
termines the most specific matching function. We have an algo-
rithm for signature comparison that operates entirely at runtime,
but this can be very inefficient in practice. Most of the function
selection process can be done statically using the function sig-
natures and data structures as a guide. We discuss the imple-
mentation details of both algorithms in Section 5.

Type Checking Traversals The non-standard nature of our traver-
sal and function sets requires an external type checker. Approx-
imating the traversal and function selection for recursive types
can make static type checking difficult, since recursive results
affect selection and vice versa. Our idealized model and type
system are described elsewhere [5], but here we are concerned
with an algorithm for this approximation. We present an imple-
mentation of our custom unification algorithm that computes
the return types of recursive traversals given a list of function
signatures in Section 6.

Function Set Coverage It is not enough to decide the type that a
traversal using a function set will return. We must also be sure
that at each dispatch point there is at least one function that can
be selected for the possible recursive return types, similar to
exhaustive pattern match checking. Since our type hierarchies
can be described as trees, we call the abstract problem leaf-



covering, which is coNP-complete. We demonstrate two dif-
ferent algorithms that compute a missing signature with run-
ning times that depend on the size of different parameters in
Section 7. Bounding one of these parameters makes the corre-
sponding solution tractable.

Our contributions are both practical and theoretical. On the prac-
tical side, we provide thorough descriptions of our algorithms and
executable solutions written in Haskell. We describe the genera-
tion of polytypic functions that users of our TBGP implementations
unknowingly rely on. Our dispatch and type checking algorithms
are novel applications of older techniques: automata-based match-
ing [10, 13] and unification [36]. On the theoretical side, we intro-
duce a new coNP-complete problem that is related to exhaustive
pattern checking. We give two fixed parameter tractable solutions,
with running times that depend on different parameters. We use a
more efficient solution to the decision version of the problem with
a greedy search technique corresponding to self-reducibility, rather
than the general reduction of search to decision for NP-complete
problems [33].

We begin with a background (Section 2) on our approach to
traversal-based generic programming using our C# implementation
for examples. After discussing the related algorithms in context,
we discuss the generation of polytypic functions in Section 3. We
present a more formal notation and Haskell definitions in Section 4.
We then present the details of each algorithm/solution (Sections 5,
6, and 7); and give implementations in Haskell. We discuss related
work in Section 8, and conclude in Section 9.

2. Background
What is traversal-based generic programming (TBGP)? The basic
view is that it is a separation of structural recursion and function-
ality. There are several other techniques for doing this (e.g., gener-
alized folds [24, 37], Scrap Your Boilerplate (SYB) [16, 17], and
traversal combinators [19, 39]), but we build on ideas from adaptive
programming [22, 31]. Our approach is completely functional (i.e.,
side-effect free1) and is conceptually similar to Lämmel’s ideas of
updatable fold algebras [20]. Our Java and C# implementations
(collectively called DemeterF) include a class generator, data struc-
tures, and generic traversal libraries. This section is meant to be a
quick overview of TBGP, but before going into a more thorough
description and showing some function examples, we discuss data
structure descriptions.

2.1 Data Structures: Class Dictionaries
In order to describe object-oriented data structures to be traversed,
we use a convenient, modernized class dictionary (CD) syntax [21].
We view classes as being either abstract, having sub-classes and
possibly common fields, or concrete, having fields, but no sub-
classes. Our CD definitions look similar to EBNF (including con-
crete syntax) with abstract and concrete classes differing only by
the existence of subclasses. An example CD that represents simple
expression structures is shown in Figure 1.

A class is defined by an identifier, e.g., Exp, followed by an
equal sign and a body, terminated by a period (“.”). The body of
a definition consists of a possibly empty, bar-separated (“|”) se-
quence of subclass names, followed by a possibly empty sequence
of field and syntax definitions. A field definition has a name en-
closed in angle brackets (“< >”) followed by its type, and concrete
syntax is enclosed in double quotes. If the subclass list is non-
empty then the definition is abstract. Subclass lists are placed in
parentheses to distinguish them from shared fields. If the definition

1 This is not strictly enforced, but we do generate data structures with
readonly (or final) fields.

Exp = (Int | Var | Def | Bin).
Int = <v> int.
Var = <id> ident.
Def = <id> ident "=" <e> Exp ";" <b> Exp.
Bin = (Plus | Pow) <l> Exp <r> Exp.
Plus = "+".
Pow = "^".

Figure 1. CD Example: expression structures

has no subclasses, then it is concrete. Parametric polymorphism
(i.e., generics) is supported, but is beyond the scope of this paper.

In Figure 1, we define an abstract class Exp with four immediate
subclasses (Int, Var, etc.). Int is a concrete class with a single
field named v, of type int. Var and Def, also concrete classes,
represent variable uses and definitions, respectively. They make use
of a DemeterF library class ident to represent identifiers. Bin is
defined as the abstract superclass of Plus and Pow, which have
common fields l and r of type Exp. Plus and Pow are defined only
as concrete (prefix) syntax, inheriting common fields from Bin.
Using DemeterF’s class generator we can create the C# classes that
this CD represents, and begin to write functions over them.

2.2 Function-Classes and Traversals
DemeterF includes a Traversal class that implements a generic
walk over a data structure. The class is parametrized by a function-
object that is responsible for folding together recursive traversal
results. A function-object is an instance of a function-class (i.e., a
subclass of the DemeterF class FC) that contains specially named
methods. In our Java and C# implementations we chose the name
combine, to give an intuition of its intended use. As a first ex-
ample, Figure 2 shows a function-class, ToString, that contains
6 combine methods: one for the library class ident, and one for
each concrete subclass of Exp. The implicitly recursive function-
class computes a string representation for an Exp, using prefix
notation for binary expressions.

class ToString : FC{
string combine(ident id){ return ""+id; }
string combine(Int i, int v){ return ""+v; }
string combine(Var v, string id){ return id; }
string combine(Def d, string id, string e, string b)
{ return id+" = "+e+"; "+b; }
string combine(Plus p, string l, string r)
{ return "+ "+l+" "+r; }
string combine(Pow p, string l, string r)
{ return "^ "+l+" "+r; }

string toStr(Exp e)
{ return new Traversal(this). traverse(e); }

}

Figure 2. Example: Exp to string conversion

The final method, named toStr, accepts an Exp instance, and
creates a new Traversal passing a function-object, this, an
instance of ToString. The Traversal instance essentially ties the
recursive knot by interpreting the combine methods of the given
ToString as fold functions over the structure. We can use our
function-object by creating a new instance and calling toStr:

string s = new ToString (). toStr(an_exp );

When the traverse method is called (inside toStr), the
Traversal proceeds with a depth-first walk of the given instance,
in this case an Exp.2 Once the walk of an object’s fields are com-

2 This version of the Traversal class uses C# reflection to both inspect the
function-object for combine methods and traverse structures.



plete, the traversal selects the combine method from the function-
object with the most specific argument types. To determine the most
specific matching combine method, the traversal uses the type of
the current object as its first argument, and the types of the field
results as the rest of the arguments to combine, in left-to-right
order. For primitive/value types like int the combine method is
optional. By default the original value is returned, as illustrated in
the combine for Int, where the second argument is of type int

(i.e., not string).
Taking all arguments into account, our selection is termed mul-

tiple dispatch. In the case of ToString, when traversal reaches an
ident, the first method matches and can be applied.3 For a Var, the
recursive traversal of the id field (i.e., the first method) produces
a string, so the second method, (Var, string), matches and
is applied. Other cases follow similarly. If there is no method ap-
plicable for the types (current object and recursive results) then the
traversal throws an Exception.

2.3 Function Extension
At first glance this may seem like an encoding of generalized
folds in C#, but it is actually much more flexible. Because sets
of functions are represented as classes, we can override or over-
load combine methods using inheritance. Our DemeterF library
contains several useful generic function-classes, which can be spe-
cialized to implement more interesting functions. In particular, we
provide two classes, named TU and TP, that can be extended to im-
plement type-unifying and type-preserving functions [16, 19] re-
spectively.4

For example, we may want to write a function to count all the
int values in a given Exp. We can extend the parametrized class
TU by overriding the default combine (with zero arguments) and a
fold method, adding a special combine case for the type int. Our
class CountInts is shown in Figure 3.

class CountInts : TU<int >{
override int combine (){ return 0; }
override int fold(int a, int b){ return a+b; }
int combine(int i){ return 1; }

}

Figure 3. Example: Counting the ints with TU

When an int is reached our special combine method is called.
When there are no fields (i.e., at the leaves of the structure) the
default combine() is called. Otherwise, TU uses the fold method
to merge recursive field results (all integers in this case) to a return
result, also of type int.

Similarly, we can overload cases of TP (sometimes referred
to by OO programmers as copy) to implement transformations or
functional updates. The class Simpler in Figure 4 implements part
of a simplifying transformation for Exps.

class Simpler : TP{
Exp combine(Plus p, Int l, Int r)
{ return new Int(l.v+r.v); }
Exp combine(Def d, ident id , Exp e, Int b)
{ return b; }

}

Figure 4. Example: Exp simplification with TP

Simpler extends TP with combine cases for Plus and Def that
match specific types of recursive results. The first method matches a

3 The library class ident has no visible fields.
4 See Sections 3.2 and 3.3 for TU and TP implementation details.

Plus with Int results for its l and r fields, performing the addition
and constructing a new Int to return. The second case matches a
Def with a body that is an Int. Since the Def is no longer needed,
we return the inner Int. When our methods are not applicable, TP’s
combine methods rebuild the structure automatically. The key is
that the functions are applied recursively over an Exp, and only the
most specific method will be called. Since TP is more general, our
additional methods are called if/when they are applicable.

Of course, the extension of function-classes is not limited to
library defined classes. For example, if we change our structures by
adding a new subclass of Bin named Times:

Bin = (Times | Plus | Pow) · · · .
// · · ·
Times = "*".

Then we can also extend our function-classes, e.g., ToString:
class ToStrTimes : ToString{

string combine(Times y, string l, string r)
{ return "* "+l+" "+r; }

}

We can use instances of ToStrTimes instead of ToString for
structures that contain Times objects and the function selection of
the traversal adapts our function-objects to the data structure.

2.4 Algorithms
After reading the previous sections there are likely questions that
remain. In particular, we foresee the following possibilities:

• The function-class ToString in Figure 2 looks like it follows
directly from the CD in Figure 1. What would specific imple-
mentations of TU, TP, or Traversal look like for a given CD?
Could all of these be automatically generated?

• How is dispatch implemented; how is the most specific method
found? What does this mean when function-classes involve
overriding and overloading?

• The separate traversal and function-objects are very flexible,
but with complex type hierarchies how can we be sure that a
traversal will not throw an exception? Given a structure and a
function-class, how can this be verified?

In the rest of this paper we provide answers to each of the above
questions, in order, by describing the algorithms used in our various
TBGP implementations. In the next section we discuss the genera-
tion of function-classes and efficient traversals from CDs, including
Show, TU, and TP. In Section 4 we introduce notation, datatypes,
headers, and functions necessary to describe our more detailed al-
gorithms and their implementations in Haskell. We then give im-
plementations of dynamic and static versions of our multiple dis-
patch in Section 5. Our algorithm for function-class type checking
is presented in Section 6, and an important aspect of function-class
checking, method coverage, is discussed in Section 7.

3. Generating Polytypic Functions
One of the benefits of TBGP is the various levels of abstraction
at which programmers can write functions. We usually write spe-
cific functions for specific datatypes, but there are several useful
function-classes that only depend on the data definitions in a given
CD. In DemeterF, instead we write functions over the structure
of CDs that generate function-classes to be used with a traver-
sal. Though our implementation is complicated by parametrized
types, we essentially traverse the abstract syntax tree of the CD
to produce specialized combine methods. In this section we give
more abstract specifications of our generation (i.e., compilation) of
generic function-classes and traversals from CD definitions by way
of rewrite rules.



At runtime our structures are only made up of concrete classes,
so generated function-classes depend only on the structure of con-
crete classes. Before generating function-classes, our implementa-
tion transforms more complex CDs into a simpler representation
by pushing common fields from abstract classes down into con-
crete subtypes. For the purpose of generating function-classes it is
enough to view a CD as a list of concrete class definitions of the
form:

C = 〈f1〉 T1 · · · 〈fn〉 Tn

Where each type, Ti, can be either abstract or concrete. The field
names, fi, are actually not important, but we use them to keep
the names of method parameters consistent. When necessary we
will view abstract class definitions simply as a list of bar separated
subtypes:

A = T1 | · · · | Tn

Which will be needed for traversal generation, discussed in Sec-
tion 3.4.

3.1 Show
Printing in various forms is traditionally a polytypic function,
though it usually needs more than just the structure of types to
produce meaningful string representations (e.g., the names of value
constructors). We define the generation of the function-class Show
(abstractly) as a function from concrete definitions to combine
methods, using a template to describe the format of our resulting
function-class. The template for Show is rather simple:

class Show : FC{
// Convert primitives
string combine(int p){ return ""+p; }
/* ... */

// Generate the rest with GenShow
∀C ∈ CD . GENSHOW(C)

}

The template provides a class definition and combine methods for
primitives that convert each into a string. The rest of the body
for Show is generated by GENSHOW, using a simple rewrite rule
mapped to each concrete definition from the CD:

GENSHOW( C = 〈f1〉 T1 · · · 〈fn〉 Tn )  

string combine (C h, string f1, · · · , string fn)

{ return "C("+f1+","+ · · · +","+fn+")"; }

For each concrete definition with n fields we create a combine
method with n + 1 arguments. The first is of type C, the defined
type, and the rest are of type string. During the traversal of an ob-
ject using an instance of Show, the field traversals will recursively
convert the fields into strings before calling the matching combine.
Within each method, the return string is constructed by concate-
nating the separating the recursive field results with commas, wrap-
ping them in parentheses, and prefixing the string with the class
name, C.

3.2 Type Unifying Functions
Show is a special case of a more general function that is commonly
associated with folds: type-unifying functions, or queries [16]. We
can use this kind of function to sum a certain (deep) property
over an object, or collect specific objects into a list. In order to
generate the equivalent function-class, TU, we provide a class that
is parametrized by the eventual return type, X. Our template for TU
follows:

class TU<X> : FC{
// Methods to override
abstract X fold(X a, X b);
abstract X combine ();

// Primitives call default
X combine(int p){ return combine (); }
/* ... */

// Generate the body with GenTU
∀C ∈ CD . GENTU(C)

}

We define the abstract methods for producing the default result
(combine()) and folding together two recursive results. Primitive
combine methods can be overridden, but initially return the default
result. Our generation rule for concrete definitions is a generaliza-
tion of the rule for Show:

GENTU( C = 〈f1〉 T1 · · · 〈fn〉 Tn )  

X combine (C h, X f1, · · · , X fn)

{ return fold(f1, fold(f2, · · · )); }

Each generated combine method accepts n + 1 parameters: again
the first of type C, but the rest are of our type parameter X. If
necessary, the return result is computed by nested calls to fold.
Figure 5 shows the resulting TU class, specialized for our Exp
CD. The generated version of TU is a direct replacement for the

class TU<X> : FC{
/* ... */
X combine(Def _h, X id, X e, X b)
{ return fold(id ,fold(e,b)); }
X combine(Plus _h, X l, X r)
{ return fold(l,r); }
/* ... */

}

Figure 5. TU generated for Exps

generic/reflective version used in Figure 3. The generated function-
class gives us much better performance, especially when we inline
traversals and dispatch [6].

3.3 Type Preserving Functions
Our last function-class generation example is probably the most
useful. We use it often to do recursive functional updates and
transformations over different types. Since combine methods are
optional for primitive types we leave them out of our template,
shown below.

class TP : FC{
// Generate the body with GenTP
∀C ∈ CD . GENTP(C)

}

Our generation rule creates a combine method that simply recon-
structs a new C instance from the recursive traversal results.

GENTP( C = 〈f1〉 T1 · · · 〈fn〉 Tn )  

C combine (C h, T1 f1, · · · , Tn fn)

{ return new C(f1, · · · , fn); }

Because the transformation is type preserving, each field result type
is the same as its defined type, Ti. The resulting generated TP class
for our Exp CD is shown in Figure 6.

3.4 Traversal Generation
Our function-classes can be considered nearsighted, since they do
not look past the types of the recursive traversal results. They



class TP : FC{
/* ... */
Def combine(Def _h, ident id , Exp e, Exp b)
{ return new Def(id , e, b); }
Plus combine(Plus _h, Exp l, Exp r)
{ return new Plus(l, r); }
/* ... */

}

Figure 6. TP generated for Exps

do, however, rely on a generic traversal to adapt their combine
methods to different structures. When we have a specific CD, the
generic/reflective Traversal used in Section 2 can be replaced
with a generated version that performs much better.

Our template for traversal generation is shown below.

class Traversal{
FC fobj;
Traversal(FC f){ fobj = f; }

// Generate traversal methods
∀A ∈ CD . GENTRAV(A)
∀C ∈ CD . GENTRAV(C)

}

The generated Traversal class accepts a function-object, which
will be used to fold together recursive results as before. Though
only concrete classes exist at runtime, the body of the traversal
uses the CD’s abstract definitions to decide between subclasses.
Our traversal generation rule, GENTRAV, is shown below. First for
abstract, then concrete definitions.

GENTRAV( A = T1 | · · · | Tn )  

R traverse <R>(A h){
if ( h is T1) return traverse <R>((T1) h);

· · ·
if ( h is Tn) return traverse <R>((Tn) h);

throw new Exception("Unknown A Subtype");

}

For abstract classes we create a simple chain of if statements
that selects the appropriate recursive traverse method for the
given instance.5 In order for the Traversal to work with differ-
ent function-classes/objects, we parametrize each traversal method
with the return type, R. For abstract types the parameter is carried
through to recursive calls.

The generation rule for concrete definitions is bit more complex:

GENTRAV( C = 〈f1〉 T1 · · · 〈fn〉 Tn )  

R traverse <R>(C h){
object f1 = traverse <object>( h.f1);

· · ·
object fn = traverse <object>( h.fn);

return apply (fobj, new object[]{ h, f1, ..., fn});
}

For each of the class’ fields we recursively call traverse and store
the result in a local variable. Since our traversal can be used with
any function-object, we assume nothing about the return types,
using object. Once all the instance’s fields have been traversed
we apply our function-object, fobj to an array of the results,
including the original object as its first element. The elided apply
method determines the types of the arguments and dynamically
dispatches to fobj’s most specific combine method.

5 Like Java, C# will statically resolve the overloaded traverse calls be-
cause of casting.

3.5 Discussion
The generation of function-classes benefits from the nearsighted
nature of our traversals. The combine methods can be generated
independently, since they need not look past their argument types.
On the other hand, Traversal generation is lower level, dealing
with instance checks and function-object dispatch. By mixing gen-
erated function-classes and specialized traversals we can achieve
relatively good performance, but in order to compete with hand-
written functions, we need to improve our dispatch algorithms, i.e.,
the implementation of apply, which is the topic of Section 5.

4. Types and Signature Notation
The rest of our algorithms deal with types and method signatures.
In this section we define a convenient notation for the descrip-
tions to follow. As we approach the implementation of various al-
gorithms we will also define the Haskell datatypes and function
headers that will be needed. We chose Haskell because it allows us
to present algorithmic descriptions that are unambiguous, concise,
and best of all, executable. All our implementations should be rea-
sonably self explanatory, but we will also walk through the code to
be sure they are understandable, even to non-Haskell wizards.6

4.1 Types
We model types as symbols. Again we use a simple model of CDs
that does not include syntax strings or common fields. As before,
abstract classes are defined by a list of subtypes/variants:

A = T1 | · · · | Tn

For the checking of traversals, field names in concrete classes are
not important, so we model concrete classes as products of types:

C = T1 × · · · × Tn

Our subtype relation, ≤, is built from the relationship given by
abstract classes from a CD, which we write ≺ and call extends:

A = T1 | · · · | Tn =⇒ ∀i ∈ [1..n] Ti ≺ A

We write its transitive closure <, defined as:

B < D ≡ B ≺ D ∨ ∃C . C < D ∧ B < C

Finally, ≤ is defined as the reflexive extension of <:

C ≤ B ≡ C = B ∨ C < B

When needed we will also use a relation we call related, or ./,
which extends the subtype relation in both directions:

C ./ C′ ≡ C ≤ C′ ∨ C′ ≤ C

If two types are related, then we will consider them when simulat-
ing multiple dispatch.

4.2 Method Signatures
When discussing combine methods we are mostly interested in
their argument types. We model each signature as a vector (or
sequence) of symbols. We will use vector (over-arrow) notation for
variables that represent signatures, but also refer to them as sub-
scripted elements when convenient:

~s = (s1, . . . , sn)

Function-classes/objects are represented as sets of signatures; we
will use uppercase letters for signature sets:

S = {~s1, . . . , ~sn}

6 The authors are far from being Haskell wizards, so explanations may be
(overly) thorough.



Though we will usually use lists, not sets, especially in our Haskell
implementations.

We extend our subtype relation,≤, to signatures of equal length,
say n:

~s ≤ ~u ≡ |~s| = |~u| = n ∧ ∀i ∈ [1..n] si ≤ ui

Similarly for our related relation, ./. We refer to the reflexive
subtype relation as symmetric, and intuitively call it applicable,
stating that a method with the second signature is applicable to
runtime argument types described by the first signature.

When two signatures are related, we can order them to model
dispatch with an asymmetric relation on signatures, v:

~s v ~u ≡ ~s ≤ ~u∧
∃i ∈ [1..n] . (si < ui) ∧ (∀k ∈ [1..i-1] . sk = uk)

This ordering is similar to lexicographic order typically used to sort
strings, and is used in our definition of most specific.

4.3 Haskell Headers
Figure 7 shows our initial type definitions and functions for de-
scribing our algorithms in Haskell. We model type names, Typ, as
strings, and signatures as lists of Typs. We will use the function
update to replace the ith Typ in a Sig with the given Typ. Our re-
flexive, transitive subtype relation is defined as a binary predicate,
which is used to define an ordering function, sub ord, eventually
for sorting lists of Typs.

-- Type names
type Typ = String
-- Method argument signatures
type Sig = [Typ]

-- Replace the ith Typ in a Sig
update :: Sig -> Int -> Typ -> Sig

-- Reflexive/ transitive subtype relation
subtype :: Typ -> Typ -> Bool
sub_ord :: Typ -> Typ -> Ordering

-- Related by subtyping/ supertyping
related :: Typ -> Typ -> Bool
rel_sig :: Sig -> Sig -> Bool

Figure 7. Setup: Datatypes and Relations

We also define our related predicate on types, to represent ./, and
extend it to signatures with rel sig.

Our symmetric and asymmetric signature comparison functions
are completely defined in Figure 8. symmet is a mapping of subtype
over lists of types: zipWith applies our predicate pair-wise to
elements from different lists. The function asymmet recursively

-- Symmetric order on signatures ( applicable )
symmet :: Sig -> Sig -> Bool
symmet as bs = and (zipWith subtype as bs)

-- Asymmetric order on signatures (more specific)
asymmet :: Sig -> Sig -> Bool
asymmet [] [] = False
asymmet (a:as) (b:bs) | a == b = asymmet as bs

| otherwise = subtype a b

Figure 8. Setup: Signature comparison

looks for the first non-equal type, which must be a subtype. The
two cases of asymmet use patterns to match empty lists, [ ], and
non-empty lists, (a:as), where the latter binds a to the head of the
list, and as to its tail. We use these two functions in combination to
describe our method dispatch in Section 5.

4.4 Running Example
In order to demonstrate our signature-based algorithms with a small
but meaningful example, we will use the CD definitions shown in
Figure 9. The concrete class A has two fields of type B. B is an

A = <l> B <r> B
B = (C | D).
C = .
D = .

Figure 9. Example CD for Dispatch/Type Checking

abstract class with two subtypes, C and D, which have no fields.
For this CD we write a simple function-class, shown in Fig-

ure 10. The test method within Test traverses an instance of A.

class Test : FC{
B combine(B b){ return b; }
C combine(A a, C l, B r){ return l; }
C combine(A a, B l, C r){ return r; }
C combine(A a, B l, B r){ return new C(); }

C test(A a)
{ return new Traversal(this). traverse(a); }

}

Figure 10. Example for Dispatch/Type Checking

The first combine method simply returns the B when applied. The
other combine methods together return the left-most C in the tra-
versed A, or create a new C if none exists. These three methods
will demonstrate our method dispatch, type checking, and method
coverage in the following three sections.

5. Multiple Dispatch
We now have all the tools to describe the multiple dispatching al-
gorithm used in DemeterF. During traversal, when recursive results
have been returned for the fields of an object, the traversal uses
the types of the results to determine the most specific method sig-
nature to be called. We have devised two different dispatch algo-
rithms: one which assumes nothing about the method signatures to
be applied, and a second that calculates a decision tree for a list of
method signatures, when given an approximation of the argumen-
t/traversal types. These correspond to our dynamic and static (or
mixed) dispatch strategies used for our reflective and static/gener-
ated traversal implementations in DemeterF.

5.1 Dynamic Dispatch
Given a signature representing the types of runtime arguments and
a list of signatures representing a function-class, our dynamic dis-
patch returns the selected, most specific signature. An implemen-
tation of our dynamic algorithm in Haskell is shown in Figure 11.
We divide it into two separate functions that search through the

select :: Sig -> [Sig] -> Sig
select c [] = error "No Applicable Sig"
select c (a:as) = if (symmet c a)

then (best a c as)
else (select c as)

best :: Sig -> Sig -> [Sig] -> Sig
best s c [] = s
best s c (a:as) = if (symmet c a) && (asymmet a s)

then (best a c as)
else (best s c as)

Figure 11. Reflective Selection Algorithm



list of signatures to find the best one. The function select it-
erates through the list of signatures until an applicable Sig (us-
ing symmet) is found. Again we use patterns to match empty list,
[ ], and non-empty list, (a:as). If the list of signatures is empty,
then there is no applicable function for the given arguments, and
an error is raised. Once an applicable method is found, select
then passes it off to the function best, which searches for another
applicable signature that is more specific, using asymmet.

5.2 Example and Discussion
Our example function-class Test from Figure 10 consists of four
combine methods. If the traversal of the fields of an A returned a D
and a C respectively, then the signature passed to select would
be ["A","D","C"]. For these results, select returns the third
combine signature, ["A","B","C"]. If the first field of the A was
a C instead, then the second combine, ["A","C","B"], would
be selected. Because our method selection is asymmetric, traversal
results of ["A","C","C"] would also cause the second combine
to be selected.

The select algorithm suits our purposes for a dynamic adap-
tive traversal. However, it is not the most efficient. Our inefficiency
comes from the fact that all method signatures of the function-class
are passed to select, and must be compared to determine which
is the most specific. As we saw in our C# examples (e.g., Figure 2),
the number of methods applicable at any given concrete type is usu-
ally limited. In many of the programs that we have written using
DemeterF, our function-classes have less than 5 overloaded meth-
ods applicable at each concrete type. If we can figure out which
methods might possibly be called before the traversal, then we can
greatly increase dispatch efficiency.

5.3 Minimal Dispatch (Residue)
By determining which methods might be called at a given point
in traversal, we can not only limit our signature search, but we
can statically build a decision tree to determine the most specific
signature, with a small number of residual “instance” checks left
for runtime. Figure 12 shows Haskell datatypes and functions that
calculate dispatch residue. We do this by constructing a decision
tree, Dec, of type tests. An (IF i t d1 d2) value represents an
instance check: if the ith parameter is an instance (or a subtype) of
the type t, then the decision continues with the left decision tree,
d1, otherwise it continues with d2. A (CALL ~s) value represents
the final selection and dispatch to the given signature.

The top method, residue, accepts a signature, s, that approx-
imates the types to be dispatched during traversal, and the list of
method signatures, as. We construct our decision for the parame-
ter number i, which starts at 0. If there are no methods given then
we raise an error.7 If we have tested all arguments, then we can
safely (and statically) create a CALL and select the most specific
applicable method. Otherwise, we filter the related signatures
and collect each of their ith parameter Typs. The infix list opera-
tor !! returns the ith element of the list, and (!!i) is its partial
application. We use nub to remove duplicates and the resulting list
is used to build a list of pairs, ps, using a custom function accum,
in subtype order. accum accumulates a list of pairs of a Typ and
a list of Typ that represents an eventual type test, and the prefix of
Typs representing instance checks that will have failed. The result-
ing pairs are used to build another list of pairs, with Haskell’s list
comprehension notation.

The name gs stands for signature groups: we place signatures
into (possibly overlapping) groups by their ith argument type. In
the outer comprehension we take the pair of the Typ, t, and the

7 This is a very weak check, since the algorithm only chooses from the given
methods. Eliminating ‘incompleteness’ errors is discussed in Section 7.

data Dec = CALL Sig
| IF Int Typ Dec Dec

residue :: Sig -> [Sig] -> Dec
residue s as = decision 0 s as

decision :: Int -> Sig -> [Sig] -> Dec
decision i s [] = error "No Signatures Given"
decision i s as =

if (i >= (length s))
then (CALL (select s as))
else

let ts = nub (map (!!i) (filter (rel_sig s) as))
ps = accum (sortBy sub_ord ts) []
gs = [(t, [ a | a <- as , related (a!!i) t &&

not (any (subtype (a!!i)) ignr) ])
| (t,ignr) <- ps ]

in (buildDec i s gs) where

accum :: [Typ] -> [Typ] -> [(Typ ,[Typ])]
accum [] ignr = []
accum (t:ts) ignr = (t,ignr): accum ts (t:ignr)

buildDec :: Int -> Sig -> [(Typ , [Sig])] -> Dec
buildDec i s [] = error "No Groups"
buildDec i s ((t,as):gs) =

let d = (decision (i+1) (update s i t) as)
in if (null gs) then d

else (IF i t d (buildDec i s gs))

Figure 12. Residual Selection Algorithm

types that can be ignored, ignr, and place t as the left element
of a pair. In the right of each pair we place the list of method
signatures that are still related, an whose ith arguments are not
subtypes of the ignored typs. The intuition is that related types,
both subtypes and supertypes, are considered during dispatch: the
former for matching more specific types (e.g., Var rather than Exp),
the latter for more abstract cases (e.g., Exp when/if no other subtype
matches). We will eventually build If decisions, so the ignored
types represent the Typ tests that have failed within a chain of
instance checks, so redundant tests can be eliminated.

The groups of methods are passed to buildDec, which con-
structs the nested IFs to decide between the groups based on the
type of the ith argument. Our list of pairs is deconstructed with a
simple pattern match. We compute a decision tree for the next ar-
gument (i+1) using update to make the signature more accurate.
Since d will be under the IF, the type t may be more specific than
before. We can then determine whether or not an IF is necessary, if
this is the last (or only) signature group.

5.4 Example
With our example function-class Test, we can construct a dispatch
for the traversal of an A instance. The traversal of a C or D instance
is returned unchanged, so the best bound we can place statically
on the dispatch arguments is ["A","B","B"]. When residue
is called with the list of method signatures it returns the Dec
instance shown in Figure 13. If we interpret the decision on an

IF 1 "C" (IF 2 "C" (CALL ["A","C","B"])
(CALL ["A","C","B"]))

(IF 2 "C" (CALL ["A","B","C"])
(CALL ["A","B","B"]))

Figure 13. Residual Selection Algorithm

argument signature of ["A","D","C"], then we select the else
branch of the outer IF, since D 6≤ C, and the then branch of the inner
IF, finally selecting ["A","B","C"], the same as our dynamic
select algorithm.



5.5 Implementation Comparison
Each of our dispatch algorithms does its job well. In DemeterF, we
use the reflective dispatch (select) to prototype function-classes
or when efficiency is not important. The benefit of select is that it
requires no prior knowledge of the method signatures or argument
types, so it can be used with any function-class, over any traver-
sal. Once the development of structures and methods has settled,
we typically generate traversal code for a particular function-class
and data structures, using residue to compute dispatch decisions.
These decisions replace apply in the generated traversals for con-
crete types from Section 3.4.

The decision result from residue is optimal in the sense that
we use a minimal amount of decisions to select the appropriate sig-
nature. At worst, the path to any CALL decision has a length that is
a product of the size of the largest abstract definition and the num-
ber of arguments. However, the worst case is almost impossible to
recreate, since it requires at least as many methods (e.g., all per-
mutations). Average case runtime is much better, as our example
in Figure 13 shows, requiring only 2 tests. In our experience im-
plementing DemeterF, dispatch residue usually contains less than 3
instance tests, which in certain cases can give traversal-based func-
tions better performance than handwritten Java code [6]. But, build-
ing a minimal dispatch decision relies on approximating traversal
return types accurately, and assuring that a method exists for each
of the approximated traversal result; the topics of the next two sec-
tions.

6. Type Checking
Our traversal-based approach using function-objects is very flexible
with respect to the different types that can be traversed and the
types that can be returned by a given function-class. In particular,
the traversal of different (unrelated) types can return completely
different results. In order to generate specialized traversals and
replace our dynamic dispatch, select, with a more efficient static
decision, we calculate the traversal return types of a function-class
over a data structure. Type checking a traversal involves solving
recursive equations using a simple form of unification [36], inspired
by Milner’s original type inference algorithm [27].

Our algorithm accepts representations of a CD, a function-class,
a traversal start type, and a list of types currently being checked. It
returns a type paired with a substitution. The type represents the
return type of a traversal of an instance of the starting type using
the given function-class. The substitution maps recursive abstract
types to the type that the functions actually handle, giving us an
upper bound on the possible return type.

6.1 Haskell Setup
The algorithm is best described in Haskell code. Figure 14 shows
our datatype and function headers that we will use to model CDs,
method types, and substitutions. A CD is represented by a list of
abstract and concrete (Abst and Concr) definitions, each with a
name and a list of Typs. We will use the function finddef to
lookup a type’s definition in a CD and common super to determine
the closest common supertype of two types, sometimes referred
to as their least upper bound (LUB). A Meth is a pair8 of a Sig
and a return Typ, and function-classes will be modeled as a list of
Meth. Our type checking function returns a pair of a special type,
RTyp, and a substitution, Subst, which will be created by unifying
recursive types with related method signatures. RTyp represents
either a type variable, TVar, for recursive uses, or a normal (user)
type, UTyp. The function subst applies a substitution by replacing
type variables with their binding in the given Subst. The final

8 (a,b) is Haskell syntax for both the type and value constructors for pair.

-- Model Simple Class Dictionaries
type CD = [Def]
data Def = Abst Typ [Typ]

| Concr Typ [Typ]

finddef :: CD -> Typ -> Def
common_super :: Typ -> Typ -> Typ

-- Methods , Return Types , and Substitutions
type Meth = (Sig ,Typ)
type Subst = [(String ,Typ)]
data RTyp = TVar String | UTyp Typ

-- Apply a Substitution to an RTyp
subst :: Subst -> RTyp -> Typ

-- Find Common Super and Merge Substitutions
lub_rets :: [(RTyp ,Subst)] -> (RTyp ,Subst)

Figure 14. Setup: Helpers and Datatypes

function lub rets combines a list of (RTyp,Subst) pairs, finding
the common super for the RTyp and any duplicate bindings within
the substitutions.

We begin our algorithm by showing the extension of rel sig
to RTyps, shown in Figure 15. The function accepts a list of
RTyp/Subst pairs and determines whether or not the given Sig
is related. What is important here is that we assume that a type

rel_rsig :: [(RTyp ,Subst)] -> Sig -> Bool
rel_rsig (r:rs) (t:ts) =

(rel_rsig rs ts) && case (fst r) of

(TVar n) -> True
(UTyp n) -> (related n t)

rel_rsig [] [] = True
rel_rsig _ _ = False

Figure 15. Related Signatures with RTyp

variable is always related to a given type (in the case expression).
This allows us to approximate the traversal return types and method
selection for recursive type uses by overestimating the related
signatures.

Figure 16 shows our unification function for method arguments
(of related signatures) and least upper bound function for substitu-
tions. We use unify args to unify type variables (i.e., recursive

unify_args :: [(RTyp ,Subst )] -> [Typ] -> Subst
unify_args [] [] = []
unify_args ((r,sub):rs) (t:ts) =

let nsub = (foldr lub_subst sub (unify_args rs ts))
in case r of

(TVar n) -> lub_subst (n,t) nsub
(UTyp n) -> nsub

lub_subst :: (String ,Typ) -> Subst -> Subst
lub_subst (n,t) [] = [(n,t)]
lub_subst (n,t) ((np,tp):ss) =

if (n == np) then (n,( common_super t tp)):ss
else (np ,tp):( lub_subst (n,t) ss)

Figure 16. Unification and Substitutions

uses) with the methods that might be called at runtime. The call to
foldr combines recursive substitutions, then we decide whether or
not to add a new binding. For TVars we use lub subst to merge
a new binding that matches the corresponding argument type. The
implementation of lub subst merges bindings of the same name
by finding the common supertype of their result type (lub rets is
similar).



Finally, Figure 17 shows our typecheck function that com-
putes the return type of a traversal, given a CD, a list of Meth, a list
of recursive abstract Typs, and a start Typ that will be traversed.
The function computes a return type for a traversal with the given
list of methods and a substitution that represents any constraints on
uses of recursive abstract types.

typecheck :: CD-> [Meth]-> [Typ]-> Typ -> (RTyp ,Subst)
typecheck cd fc rec start =

if (elem start rec) then (TVar start ,[])
else (checkdef (finddef cd start )) where

checkdef :: Def -> (RTyp ,Subst)
checkdef (Abst n sts) =

lub_rets (map (typecheck cd fc (n:rec)) sts)
checkdef (Concr n ts) =

let fldts = (map (typecheck cd fc rec) ts)
argts = (UTyp n,[]): fldts
relms = filter (( rel_rsig argts) . fst) fc
rettyp m = (UTyp (snd m),

unify_args argts (fst m))
in lub_rets (map rettyp relms)

Figure 17. Type Checking Algorithm

Our algorithm first checks if the start type is an element of the
rec list, if so then we return a TVar for the type, which will be
unified later. This keeps the algorithm from recurring infinitely.
The type checking task is then delegated to a helper function,
checkdef, after looking up the type’s definition in the CD.

In checkdef we distinguish between abstract and concrete type
definitions. For abstract definitions we find the common supertype
of type checking each of the subtypes using similar arguments, but
placing the current type at the head of the recursive list. If the Def is
concrete, we map our typecheck function to determine the return
types (and substitutions) for its field types. We then add the current
type as a prefix, and filter out unrelated signatures. The function
fst, which returns the left of a pair, is composed (.) with the
partial application of rel rsig. We map a local function rettyp
over the methods to create pairs with the method’s return type, and
the unification of any recursive types with the argument types of
selected methods. Our last step is to find the least upper bound of
the return types and substitutions from the methods.

6.2 Example and Discussion
Our Test function-class example from Figure 10 is rather simple
to type check, since the defined classes are not recursive. For a
traversal starting at A, we eventually type check C and D to find
that the possible method, combine(B) returns a B. The return
types trivially unify to B, which is used to create the signature
["A","B","B"] and to find related methods (argts and relms
in Figure 17). All signatures of Test with A as their first argument
are related and their return types unify (again, trivially) to C.

For the Simpler function-class over Exps (Figure 4), the meth-
ods inherited from TP are equivalent to identity, i.e., traversal of an
Int returns an Int, Var returns Var, etc.. Our overloaded meth-
ods for Plus and Def affect the type checking of Simpler in two
ways. First, both method signatures place constraints on recursive
uses Exp, though the constraining argument type Int is easily uni-
fied with the constraints of Exp from other signatures, resulting in a
substitution of (Exp→ Exp).9 Second, the return type of bot meth-
ods, Int, must each be unified with the method it overloads. This
unification means that rather than the traversal of a Plus return-
ing Plus, our best approximation is Exp.10 For our starting abstract

9 In contrast, for our CountInts function-class the resulting substitution is
(Exp→ int)
10 We could possibly do better if we use a notion of unions, resulting in a
Plus traversal returning the type (Plus ∪ Int).

type Exp, the results of all the subtype traversals unify to a final
result of Exp.

For the sake of conciseness we have distilled our algorithm
to a minimum, but there are other options when implementing
our typing rules, which are described in another paper [5]. In
our Java implementation we use side-effects to reduce duplicate
calculations. We could have used monads in Haskell, but we elected
for a simple functional approach. Central to handling recursive
types is our capture of the argument types for unification. Within
unify args we have chosen to unify to the least upper bound of
the argument types. We could also do a bit more work to reduce
this restriction on functions and allow the arguments to accept more
general types than those returned by recursive traversals. In practice
we have not run into any problems where valid traversals fail to type
check, so our approximation seems quite reasonable.

7. Method Coverage
Our traversal type checking algorithm determines the types that the
traversal of a certain structure will return, but we are also inter-
ested in whether or not a traversal using a given function-class will
ever raise a dispatch error. In order to verify this we must make
sure that all possible concrete types, within our type checking ap-
proximation, are handled by the function-class. The two problems
are certainly related: the traversal result types discovered in type
checking provide an upper bound on the method signatures that
must be covered in order to ensure completeness and guarantee a
safe traversal for all possible data structure instances.

We refer to the abstract problem as leaf-covering in reference
to viewing type hierarchies as trees with abstract nodes and con-
crete leaves. In DemeterF, method coverage is confirmed after type
checking, using the related methods for each concrete type, where
the traversal dispatches to a combine method. After giving some
background we describe the leaf-covering problem, present two
different solutions, and analyze their running times.

7.1 Trees
In order to abstract the leaf-covering problem we view type hier-
archies as trees of types where our extends relation, ≺, gives the
successors of each type. For example, our expression CD from Fig-
ure 1 can be drawn as the tree shown in Figure 18.

Exp

DefVar Bin

Plus Pow

Int

Figure 18. Exp Type Tree

We will use the type name, say T , to refer to the tree with T as its
root. The function nodes returns the set (or a list) of the types in a
tree:

nodes(T ) ≡ {T ′ | T ′ ≤ T }
We also define succs, which returns the set of a tree’s immediate
successors:

succs(T ) ≡ {T ′ | T ′ ≺ T }
Finally, we define the function leaves, which returns the leaves of
a tree:

leaves(T ) ≡ {T ′ ∈ nodes(T ) | succs(T ′) = ∅ }
Using our Exp hierarchy as an example, nodes(Exp) would return
the set of all user-defined types, and other function returns would
be as follows:

succs(Exp) = { Int, Var, Def, Bin }
leaves(Exp) = { Int, Var, Def, Plus, Pow }



7.2 Graph Cartesian Products
A Graph Cartesian Product (GCP) is a useful metaphor when rea-
soning about (and visualizing) relationships between method signa-
tures. We define the GCP, G, of a sequence of trees, (T1, . . . , Tn),
as a pair of vertices and edges, G = (V, E), where:

V = nodes(T1)× · · · × nodes(Tn)

E = { (~s,~a) ∈ V × V | ~a ≺ ~s }
Our immediate successor relation, ≺, on signatures is defined as
follows:

(a1, . . . , an) ≺ (s1, . . . , sn) ≡
∃i . ai ≺ si ∧ ∀j ∈ [1..n] . j 6= i =⇒ aj = sj

Vertices of the graph are all possible signature permutations made
from the types in each of the trees. Edges are formed between sig-
natures that differ by just one element, where the different element
in the target signature extends the corresponding element of the
source signature. Reachability in the graph is defined by our ≤ re-
lation, and the leaves of the graph are signatures from the cross
product of the leaves of the individual trees.

For example, part of the GCP defined by our Exp CD with
root/trees of (Plus, Exp, Exp) is shown in Figure 19.

(Plus,Exp,Exp)

(Plus,Int,Exp) (Plus,Bin,Exp)(Plus,Exp,Int)

(Plus,Int,Int) (Plus,Bin,Bin)

(Plus,Plus,Int) (Plus,Plus,Plus) (Plus,Pow,Plus)

(Plus,Plus,Exp)

. . . .

. . . .

. . . . . . .

. . . . .

Figure 19. GCP for (Plus, Exp, Exp)

The figure contains only a sampling of the vertices and edges, since
the full graph contains approximately 50 vertices, and 80 edges.
We use this more visual analogy to give an alternative definition of
leaf-covering in Section ??.

7.3 Leaf-Covering
Given a sequence of trees, (T1, . . . , Tn), we say that a set of
signatures, S, covers the given trees if S contains an applicable
signature for each signature in the cross-product of the leaves of
the trees:

covers(S, T1, . . . , Tn) ≡
∀~a ∈ (leaves(T1)× · · · × leaves(Tn)) .∃~s ∈ S .~a ≤ ~s

We call this decision procedure the leaf-covering problem, and it
shows up in a number situations involving multi-methods. Alter-
natively, we can define the leaf-covering problem in reference to
the GCP. Given a sequence of trees, (T1, . . . , Tn), and the implied
GCP, we say that a set of selected vertices, S, covers the given trees
if each leave of the GCP has an ancestor in S.

In the case of TBGP, the roots of the trees correspond to the
approximate traversal return types, and the cross-product of the
leaves corresponds to all possible concrete argument sequences,
i.e., possible runtime types for dispatch. The set of signatures, S,
represents the argument types of combine methods.

7.3.1 Example
For our example CD from Figure 9, our Test function class (Fig-
ure 10) fully covers the traversal. From type checking we know
that when traversing an A instance, the subtraversals return Bs, so
our signature to cover is (A, B, B). Checking coverage is easy
for Test, since this signature, i.e., the root of the GCP, is one of the

function-class’ methods. If we remove this signature from Test,
then the leaf signature (A, D, D) is left uncovered. Note that if
combine(A, D, D) was part of our function-class then there is no
need to have combine(A, B, B), since it will never be called.

7.4 Brute-Force
Our task is to implement covers. The definition of the problem
admits a straightforward solution: compute all the possible leaf
combinations, and check that each has an applicable signature, i.e.,
subtype returns True. Datatypes and helper functions are shown
in Figure 20. In order to model type hierarchies as trees we define

-- Trees of types ( hierarchies )
data Tree = T Typ [Tree]

leaves :: Tree -> [Typ]
cross :: [[Typ]] -> [[Typ]]

Figure 20. Leaf-Covering Setup

a simple Tree datatype for arbitrarily branching trees of Typs. The
function leaves returns all the leaves of a given Tree, and the
function cross returns the cross product of a list of lists.

Figure 21 shows the straightforward encoding of our covers
predicate into Haskell. We bind lfs to the cross product of the
leaves of all trees, and a local function one that returns True if
any of the signatures are applicable to the given leaf, l. The body

covers :: [Tree] -> [Sig] -> Bool
covers ts ss = let lfs = cross (map leaves ts)

one l = (any (symmet l) ss)
in all one lfs

Figure 21. Brute-Force Solution

of our let tests if all the leaves have one signature in the list. If
so, then all leaf Sigs are covered.

7.4.1 Running Time
The brute force solution is easy to understand, but is very ineffi-
cient. If we use t as a bound on the size of each tree, then our
brute-force solution has running time:

covers(S, T1, . . . , Tn) ∈ O( |S| · n · tn )

This solution is exponential in, n, the number of trees (i.e., type
hierarchies), even when the number of methods, |S|, is small.
We have proven that the decision problem is coNP-complete by
reducing DNF validity to leaf-covering [2], but there is another way
to think about the problem.

7.5 Inclusion-Exclusion and Search
If we consider the leaves that each signature covers, then the
leaves covered by S is simply their union. We cannot efficiently cal-
culate this union since it involves generating an exponential num-
ber of signatures. We can, however, calculate the size of the union
without generating the leaf signatures. We do this by computing
the number of leaves in the intersection of two or more signatures
directly from the trees. The number of intersection leaf signatures
can be used to implement covers with the help of the well-known
inclusion-exclusion principle. Of course, knowing that a function-
class does not cover all necessary cases is not as helpful to pro-
grammers as returning an uncovered signature that they should add
to their function-class. We implement this function version of the
problem with an implementation of the decision procedure using
inclusion-exclusion. The key to our algorithm is a search that is
best described by analogy to the GCP.



roots :: [Tree] -> Sig
succs :: [Tree] -> Sig -> [Sig]
overlap :: [Tree] -> [Sig] -> Int

inclu_exclu :: ([Sig] -> Int) -> [Sig] -> Int

Figure 22. Inclusion/Exclusion Solution Helpers

Figure 22 shows the types of our helper functions. The function
roots returns the root signature of a list of trees. If we consider the
GCP for a list of Trees, then succs returns the list of immediate
successors of the given signature, and overlap returns the number
of leaves shared by all the given signatures. The implementation of
inclusion/exclusion, inclu exclu, takes a function that computes
the number of overlapping leaves of the given list of signatures, and
returns the size of their union.

Figure 23 shows our algorithm, uncoveredSig. The function
is passed trees representing the hierarchies (i.e., [T1, . . . , Tn]) of
traversal results and a list of signatures representing a function-
class (i.e., S). If the given signatures cover all leaves, then the
function returns Nothing, meaning no uncovered leaves. Other-
wise it returns a signature wrapped in Just, which is the ancestor
(in the GCP) of a group of uncovered leaves. The implementation

uncoveredSig :: [Tree] -> [Sig] -> Maybe Sig
uncoveredSig ts ms = down (inex ms) (roots ts) where

inex :: [Sig] -> Int
inex = inclu_exclu (overlap ts)

down :: Int -> Sig -> Maybe Sig
down mCov toLeaf =

let ss = succs ts toLeaf
in if (null ss) then (Just toLeaf)

else (across mCov ss)

across :: Int -> [Sig] -> Maybe Sig
across mCov [] = Nothing
across mCov (s:ss) =

let cov = inex (s:ms)
sCov = inex [s]

in if (cov > mCov)
then if (cov == mCov + sCov)

then (Just s)
else (down mCov s)

else (across mCov ss)

Figure 23. Leaf-Covering Algorithm

is split into three functions. inex is a partial application of our
helper functions, inclu exclu and overlap, to the given trees.
The mutually recursive functions down and across start at the root
signature (given by roots) and search for a successor Sig that,
when added to ms, covers more leaves than ms alone. The names
of the functions refer to the GCP representation, e.g., Figure 19.
In down we prepare to move toLeaf one step down the GCP. If
there are no successors then we have an uncovered leaf, otherwise
we search across the successor signatures. The body of the let

in across compares the number of the covered leaves of various
signature lists ((s:ms) and [s]). If the coverage of s with ms is the
same as the coverage of ms, i.e., mCov, and s separately, then s is
the root of a number of uncovered leaves.

The algorithm works by starting at the roots of the trees, the
‘top’ of the GCP. By definition the root signature together with
ms must cover all leaves. If ms does not cover all the leaves by
itself, then there exists a path from the root of the GCP such that
every signature, s, on the path covers more leaves than ms alone.
We simply follow this path until a leaf is found, or s and ms cover
disjoint leaves, so s is the ancestor of only uncovered leaves.

7.5.1 Running Times
If we again use t as a bound on the size of our trees, then our local
inclusion-exclusion procedure, inex, has the following running
time:

inex(S) ∈ O( t · n · 2|S| )
Where t ·n represents the running time of the overlap calculation.
Because the height and width of the GCP are each also bounded by
t · n The total running time of our search uncoveredSig is:

uncoveredSig(T1, . . . , Tn, S) ∈ O( t3 · n3 · 2|S| )
Our second algorithm still runs in exponential time, but instead of
depending on the number of trees, it is exponential in the number
of signatures (the length of ms). Because both of our algorithms are
only exponential in part of their input, they can both be termed as
fixed parameter tractable. The first becomes tractable by fixing the
number of trees, and the second by fixing the number of signatures.
In practice the number of methods is usually smaller than the
number trees, i.e., the length of the signatures.

8. Related Work
Our notion of generic programming is related to a number of func-
tional programming approaches including generalized folds [24,
37], library and combinator approaches by Lämmel et al. [18, 19]
and the Scrap Your Boilerplate series of papers [16, 17]. Our use
of function-objects over a generic traversal is closest to Lämmel’s
updatable fold algebras [20], where a function record is used to
fold over datatypes. The use of extensible and generated function-
classes allows us to emulate traditional generic programming [15,
23].

Like other generic programming implementations we can write
functions over an encoding of a universal datatype that can be
used to generate functions (like GenTU and GenTP), although our
datatype representation is meant to better represent object-oriented
class hierarchies. Updatable fold algebras provide similar extensi-
ble function records and some, but not all, of the typing flexibil-
ities of ad hoc function-classes. There have been a few attempts
to port datatype generic programming ideas to object oriented lan-
guages [28, 30], but they do not handle classes directly, requiring
datatype instances to be encoded as well. The benefit of our ap-
proach is that classes do not require datatype encodings. CDs give
us a concise way to express the structure of a hierarchy, over which
we can write and/or generate functions. In comparison, one draw-
back is that safety must be checked from outside our implementa-
tion language, though it helps us simplify the system and requires
a less complicated OO type system.

Our traversal flexibility comes mainly from our multiple dis-
patch. There has been much work on implementing multiple dis-
patch in various (usually OO) languages including Cecil [7], Mul-
tiJava [11], CLOS [38], and more recently JPred [25]. Making dis-
patch efficient has also been addressed, [1, 8] are a few approaches.
Our implementation was developed independently but ended up be-
ing similar to an approach described by Chen et al. [10]. We make
fewer assumptions about the efficiency of the individual dispatch
steps, relying only on single subtype checks (e.g., instanceof),
but their efficiency claims still apply.

Our typing rules, type checking, and method coverage algo-
rithms are inspired by several papers ranging from aspect-oriented
programming [40] to type polymorphism [27]. Our multiple dis-
patch and coverage checking is related to several static multi-
method type checking approaches [9, 26], and we draw on ideas
from local type inference [32, 35]. Our method coverage algorithm
is also likely applicable in cases of functional visitor frameworks
where traversal is implemented outside the visitor’s control, e.g.,
[12, 29].



9. Conclusion
We have presented algorithms used in our approach to traversal-
based generic programming (TBGP), and demonstrated implemen-
tations of each in Haskell. We discussed algorithms for generat-
ing polytypic functions and traversals; dynamic and static versions
of our asymmetric, multiple dispatch; flexible type checking for
function-classes over a generic traversal; and function-class cover-
age checking (leaf-covering). The algorithms themselves are appli-
cable outside of our TBGP implementations, but in our case they
help make DemeterF more useful by providing extensible function-
classes, more efficient by supporting static dispatch calculation, and
safe by type checking traversals and verifying completeness.

In the future we hope to be able to formalize our other features,
including traversal arguments/contexts and control/strategies. Be-
cause our traversals are functional, we also hope to be able to in-
crease performance with implicitly parallel traversals.
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